Chilli Challenge

Addition, Subtraction, Multiplication and Division

Addition, Subtraction, Multiplication and Division

Use their knowledge of the order of operations to carry out calculations involving the four operations
$6+4 \times 3=6+12=$ \qquad (multiplication first)
$(6+4) \times 3=10 \times 3=$ \qquad (brackets first)

Addition, Subtraction, Multiplication and Division

Calculating
Use estimation to check answers to calculations and
 determine, in the context of a problem, an appropriate degree of accuracy

Round to the nearest 100 to check the accuracy of $8376-2581=5795$
'sister' calculations
BODMAS or BIDMAS ($)$ 2 $\xlongequal{〔} \times$

Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why

An archer scores 78 and 67, but is penalised 25 points for a foul shot. What is the archer's total score?

Solve Problems

Solve problems involving addition, subtraction, multiplication and division

$$
250 \div \square=2.5
$$

Pizzas cost $£ 2$ and ice cream $£ 3$ per tub. At a party, a pizza serves two people and a tub of ice cream serves three people. How much will pizza and ice cream cost for 12 people?

Methods

Perform mental calculations, including with mixed operations and large numbers

$$
\begin{aligned}
& 105 \times 3-45=315-45=\square \\
& (330-300) \div 3=30 \div 3=\square
\end{aligned}
$$

Methods

Multiply multi-digit numbers up to 2 digits by a twodigit whole number using the formal written method of long multiplication

Methods

Divide numbers up to 3 digits by a two-digit whole number less than 20 using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

$$
\begin{array}{r}
1 6 \longdiv { 5 2 0 } \\
48 \\
40 \\
32 \\
\hline
\end{array}
$$

Can be written as \qquad
regent studies

Calculating

Identify common factors, common multiples and prime numbers below 30

Find the common factors of 8 and 10 by listing the factors of each: 8: 1, 2, 4, 8 and 10: 1, 2, 5, 10 and identifying the common factors.

Find some common multiples of 2 and 7 by listing some multiples of each: 2: $2,4,6,8,10,12,14,16,18$ and 7: 7, 14, 21, 28 and identifying the common multiples.

Prime numbers between 0 and 30 are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Addition, Subtraction, Multiplication and Division
Nice and Spicy!

Calculating

Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Round to the nearest 100 to check the accuracy of $8376-2581=5795$

Addition, Subtraction, Multiplication and Division

 Nice and Spicy!Solve Problems

Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why

An archer scores 78 and 67 , but is penalised 25 points for a foul shot. What is the archer's total score?

Solve problems involving addition, subtraction, multiplication and division

$$
250 \div \quad=2.5
$$

250 must be divided by 100
Pizzas cost $£ 2$ and ice cream $£ 3$ per tub. At a party, a pizza serves two people and a tub of ice cream serves three people. How much will pizza and ice cream cost for 12 people?

$$
£ 12 \text { for pizza and £12 for ice cream so } £ 24
$$

Methods

Perform mental calculations, including with mixed operations and large numbers

$$
\begin{aligned}
& 105 \times 3-45=315-45=270 \\
& (330-300) \div 3=30 \div 3=10
\end{aligned}
$$

Methods

Divide numbers up to 3 digits by a two-digit whole number less than 20 using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

REGENT STUDIES

Identify common factors, common multiples and prime

 numbersThe common factors of 15 and 24 are \qquad and \qquad
Use to find an equivalent fraction of $-=-$
Some common multiples of 4 and 9 are \qquad , \square, \square ...

The prime numbers between 20 and 50 are \qquad ,\square \square, \square \square, \square and \square.
\qquad \square.
\square
\square and \qquad

Calculating

Use their knowledge of the order of operations to carry out calculations involving the four operations
$6+4 \times 3=6+12=$ \qquad (multiplication first)
$(6+4) \times 3=10 \times 3=$ \qquad (brackets first)

Addition, Subtraction, Multiplication and Division It's getting hot!

Calculating

Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Round to the nearest 1000 to check the accuracy of

$$
378,376-182,581=195,765
$$

'sister' calculations
$\cap \cap$
BODMAS or BIDMAS ($)^{2} \xlongequal{\div} \times+$

Solve Problems

Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

An archer scores 98, 93 and 97. Another archer scores 91, 96, 89. What was the difference between the scores? Explain how you would use addition and subtraction to calculate the answer.

Methods

Solve problems involving addition, subtraction, multiplication and division

Use $6593 \div 19=347$ to solve $18 \times 347=$

Pizzas cost $£ 2.40$ and ice cream $£ 4.25$ per tub. At a party, a pizza serves two people and a tub of ice cream serves five people. How much will pizza and ice cream cost for 20 people?

Perform mental calculations, including with mixed operations and large numbers

$$
\begin{aligned}
& 295 \times 3-245=885-245=\square \\
& (6033-3000) \div 3=3033 \div 3=\square
\end{aligned}
$$

Methods

Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication

Methods

Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

$$
\begin{gathered}
2 4 \longdiv { 7 1 9 4 } \\
\frac{48}{239}
\end{gathered}
$$

\qquad or \qquad

Methods

Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
$2 4 \longdiv { 7 1 9 4 } . 0 0$
regent studies

Identify common factors, common multiples and prime numbers

The common factors of 15 and 24 are 1 and 3.
Use to find an equivalent fraction of $\frac{15}{24}=\frac{5}{8}$
Some common multiples of 4 and 9 are 36, 72, $108 \ldots$
The prime numbers between 20 and 50 are $23,29,31,37,41,43$ and 47.
'sister' calculations $\wedge \cap$

Calculating

Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Round to the nearest 1000 to check the accuracy of

$$
378,376-182,581=195,765
$$

$$
378,000-183,000=195,000
$$

Explain that this shows the answer is accurate to the nearest 1000, but doesn't find the mistake.

This shows that the answer is reasonable but does not highlight the error in the calculation.

Use their knowledge of the order of operations to carry out calculations involving the four operations
$6+4 \times 3=6+12=18 \quad$ (multiplication first)
$(6+4) \times 3=10 \times 3=30 \quad$ (brackets first)

Addition, Subtraction, Multiplication and Division
It's getting hot!

Solve Problems

Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

An archer scores 98, 93 and 97. Another archer scores 91, 96, 89. What was the difference between the scores? Explain how you would use addition and subtraction to calculate the answer.

$$
288-276=12
$$

Methods

Solve problems involving addition, subtraction, multiplication and division

Use $6593 \div 19=347$ to solve $18 \times 347=$
subtract 347 from 6593
Pizzas cost $£ 2.40$ and ice cream $£ 4.25$ per tub. At a party, a pizza serves two people and a tub of ice cream serves five people. How much will pizza and ice cream cost for 20 people?
$£ 24$ for pizza and $£ 17$ for ice cream so $£ 41$

Methods

Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication

全感

Methods

Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
$2 4 \longdiv { 7 1 ^ { 3 9 } 9 4 } \cdot { } ^ { 2 3 0 } 0 ^ { 7 5 }$

Identify common factors, common multiples and prime numbers

The common factors of 21 and 35 are \qquad and \qquad Use to find equivalent fraction of $\frac{21}{35}=$ explaining why.

Some common multiples of 5 and 12 are \qquad
\square
\qquad etc.

Explain how to use this when adding fractions.

The prime numbers between 0 and 100 are:
Use their knowledge of the order of operations to carry out calculations involving the four operations

Explain why $6+4 \times 3+2 \neq(6+4) \times(3+2)$.

Addition, Subtraction, Multiplication and Division

Solve Problems

Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Explain how to use rounding to check 378,376-182,581 = 195,765 and which rounded answer will help find the mistake.
For example, rounding to the nearest ten thousand: $380,000-180,000=200,000$ shows the answer 195,765 is not unreasonable, but does not highlight the error in the calculation.

Write a word problem where the answer involves at least two addition and two subtraction calculations.

Methods

Solve problems involving addition, subtraction, multiplication and division

$$
\begin{gathered}
\text { Use } 6593 \div 19=347 \text { to solve } 17 \times 347= \\
\qquad 802 \div \ldots=0.401
\end{gathered}
$$

Write a three-step word problem where three different operations must be performed to calculate the answer.

Perform mental calculations, including with mixed operations and large numbers

```
395\times5-945=
```

$$
(9099-3000) \div 3=
$$

Methods

Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

Explain how the formal written method of short division provides an answer as a decimal.

Methods

Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context

Explain how the formal written method of short division provides an answer as a decimal. Write two different word problems to explain the two different ways that the remainder can be used.

1. The remainder is not used because it is not a complete set or group.
2. The remainder needs to be used, although the final group or set is incomplete.

Calculating

Identify common factors, common multiples and prime numbers
The common factors of 21 and 35 are 1 and 7 .
Use their knowledge of the order of operations to carry out calculations involving the four operations

Use to find equivalent fraction of $\frac{21}{35}=\frac{3}{5}$ explaining why.
Explain why $6+4 \times 3+2 \neq(6+4) \times(3+2)$.
$6+4 \times 3+2=6+(4 \times 3)+2=6+12+2=20$
$21 / 35=3 / 5$ because $21 \div 7=3$ and $35 \div 7=5$
Some common multiples of 5 and 12 are 60, 120, 180 etc.
$(6+4) \times(3+2)=10 \times 5=50$
Explain how to use this when adding fractions.
You can use this when adding fractions like $3 / 5$ and $5 / 12$ to find equivalent fractions with a common denominator.
Know and recognise all the prime numbers between 0 and 100.
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61$
67,71,73,79,83,89,97.
BODMAS or BIDMAS

Calculating

Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Solve Problems

Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Explain how to use rounding to check 378,376-182,581 $=195,765$ and which rounded answer will help find the mistake.
For example, rounding to the nearest ten thousand:
$380,000-180,000=200,000$ shows the answer 195,765 is not unreasonable, but does not highlight the error in the calculation.

Write a word problem where the answer involves at least two addition and two subtraction calculations.
$378,000+183,000=195,000$ also shows the answer 195,765 is not unreasonable but does not highlight the error in calculation.
$378,400-182,600=195,800$
$378,380-182,580=195,800$

[^0]
Methods

Solve problems involving addition, subtraction, multiplication and division

$$
\begin{gathered}
\text { Use } 6593 \div 19=347 \text { to solve } 17 \times 347= \\
\qquad 802 \div \ldots=0.401
\end{gathered}
$$

Write a three-step word problem where three different operations must be performed to calculate the answer.

Take two lots of 347 away from 6593. This will leave you with 5899.
5899 and 2000
Accept a word problem that involves using 3 operations to find the answer.

Perform mental calculations, including with mixed operations and

 large numbers$$
395 \times 5-945=1030
$$

$$
(9099-3000) \div 3=2033
$$

Methods

Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

Explain how the formal written method of short division provides an answer as a decimal.

[^1]
Methods

Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context

Explain how the formal written method of short division provides an answer as a decimal. Write two different word problems to explain the two different ways that the remainder can be used.

1. The remainder is not used because it is not a complete set or group.
2. The remainder needs to be used, although the final group or set is incomplete.

Children explain to one another/teacher according to method taught in class.

[^0]: Accept problems that involve two addition and two subtraction calculations.

[^1]: Children explain to one another/teacher according to method taught in class.

